Lecture 38 : Guruswami - Sudan List Decoder
نویسندگان
چکیده
We now look at the list decoding algorithm in the breakthrough work of Sudan [2]. To motivate the algorithm, recall that in the previous algorithm, in order to prove that Step 2 works, we defined a polynomial R(X) △ = Q(X,P (X)). In particular, this implied that deg(R) ≤ degX(Q) + k · degY (Q) (and we had to set t > degX(Q) + k · degY (Q)). One shortcoming of this approach is that the maximum degree of X and Y might not occur at the same term. Sudan’s insight was to use a more “balanced” notion of degree of Q(X, Y ):
منابع مشابه
The Guruswami–Sudan Decoding Algorithm for Reed–Solomon Codes
This article is a tutorial discussion of the Guruswami–Sudan (GS) Reed–Solomon decoding algorithm, including self-contained treatments of the Kötter and Roth– Ruckenstein (RR) improvements. It also contains a number of new results, including a rigorous discussion of the average size of the decoder’s list, an improvement in the RR algorithm’s stopping rule, a simplified treatment of the combinat...
متن کاملBounds on the List-Decoding Radius of Reed--Solomon Codes
Techniques are presented for computing upper and lower bounds on the number of errors that can be corrected by list decoders for general block codes and speci cally for Reed Solomon RS codes The list decoder of Guruswami and Sudan implies such a lower bound referred to here as the GS bound for RS codes It is shown that this lower bound given by means of the code s length the minimum Hamming dis...
متن کاملA Vlsi Architecture for Interpolation in Soft-decision List Decoding of Reed-solomon Codes
The Koetter-Vardy algorithm is an algebraic soft-decision decoder for Reed-Solomon codes which is based on the Guruswami-Sudan list decoder. There are three main steps: 1) multiplicity calculation, 2) interpolation and 3) root finding. The Koetter-Vardy algorithm is challenging to implement due to the high cost of interpolation. We propose a VLSI architecture for interpolation that uses a trans...
متن کاملPerformance Analysis of Algebraic Soft-Decision Decoding of Reed-Solomon Codes
We investigate the decoding region for Algebraic Soft-Decision Decoding (ASD) of Reed-Solomon codes in a discrete, memoryless, additive-noise channel. An expression is derived for the error correction radius within which the softdecision decoder produces a list that contains the transmitted codeword. The error radius for ASD is shown to be larger than that of Guruswami-Sudan (GS) hard-decision ...
متن کاملOn the Interpolation Step in the Guruswami-Sudan List Decoding Algorithm for Reed-Solomon Codes
Divide-and-conquer method for interpolation in Guruswami-Sudan (GS) list decoding algorithm is considered. It is shown that the Groebner basis (GB) of the ideal of bivariate interpolation polynomials (IP) can be obtained as a product of trivariate polynomials corresponding to disjoint subsets of interpolation points. The impact of monomial ordering on the interpolation complexity is studied.
متن کامل